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ill recent years a number of new techniques have become available in non- 
equilibrium statistical mechanics, all derived from dynamical system theory, 
especially from the thermodynamic formalism of Ruelle. We focus here on 
periodic orbit theory, and we compare it with a novel approach proposed by 
Evans, Cohen, and Morriss, and developed further by Gallavotti and Cohen. We 
argue that the two approaches based on such theories are equivalent Ibr systems 
of many particles if the underlying dynamics is similar to that of Anosov systems, 
and that such equivalence should remain in more general situations. We extend 
our previous explanation of irreversibility in the thermostatted Lorentz gas to 
N-particle diffusion and shearing systems. 
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1. I N T R O D U C T I O N  

It  has  been recent ly no ted  that  the language  of  dynamica l  system theory  
const i tu tes  a unifying f r amework  for bo th  equi l ib r ium and  nonequ i l ib r ium 
stat is t ical  mechanicsJ  ~,2~ In fact, bo th  can be s tudied  f rom the v iewpoin t  of  
the dynamics  assoc ia ted  with a given differential  equa t ion  or  mapping .  In  
par t icu lar ,  m a n y  works  have appea red  in the nonequ i l ib r ium stat is t ical  
mechanics  l i te ra ture  which in one way  or  ano the r  make  use of  ideas from 
dynamica l  sy.stems theory,  p roduc ing  m a n y  i m p o r t a n t  results. F o r  fur ther  
informat ion ,  we refer the reader  to refs. 3-12,  which represent  jus t  a small  
f ract ion of  the avai lable  l i terature ,  and  to ref. 13, which presents  a thought -  
ful synthesis  of  some of  the mos t  i m p o r t a n t  results in the field. Also,  there  
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have been attempts to build a consistent theory of nonequilibrium systems 
with the tools of the thermodynamic formalism of Ruelle. Most notable 
among these are the recent works by Dorfman and Gaspard on the escape 
rate formalism for open systems, t~4~ However, it is in ref. 1 that the need to 
justify these ideas on the grounds of a new fundamental principle has been 
pointed out and a candidate for such a principle has been introduced. 

Given the importance and relevance for our own work of the 
arguments presented in ref. 1, we summarize them as follows. Because the 
numerical simulations of ref. 15 for shearing flows show a strong correla- 
tion between purely dynamic and thermodynamic quantities, the authors 
argue that this is due to an underlying general structure derivable from a 
fundamental principle. More precisely, they attempt to identify a counter- 
part in nonequilibrium statistical mechanics for the microcanonical ensem- 
ble of equilibrium statistical mechanics, and they propose that Ruelle's 
principle (R)--introduced in ref. 16--be invoked for this purpose. Quoting 
from ref. 1, principle R states that "the time averages of observables, on 
motions with initial data randomly sampled with the Liouville distribution 
/i o, are described by a stationary probability distribution/Y obtained by 
attributing a suitable probability density to the surface elements of the 
unstable manifolds of the points in phase space." This amounts to saying 
that a new type of ensemble is to be used in nonequilibrium problems, 
which reduces to the usual microcanonical ensemble at equilibrium (in 
agreement with what is found, for instance, in refs. 2, 11, 17, and 18 for the 
Lorentz gas) and that coincides with the Sinai-Ruelle-Bowen (SRB) 
measure for smooth hyperbolic dynamical systems. The only non- 
equilibrium system of particles where the validity of R has been rigorously 
proven is the nonequilibrium Lorentz gas at small external fields, ~ 19) for 
which numerical investigations in terms of periodic orbits c~ are now 
available. 

Gallavotti and Cohen focus on related many-particle models, and in 
particular they develop the idea proposed in ref. 15 of deriving the station- 
ary measure of a shearing system from a limiting process involving trajec- 
tory segments in phase space. Then they argue that the validity of R for 
such systems rests on a "chaotic hypothesis," which in their formulation 
says that "...the many particle systems in statistical mechanics are essen- 
tially chaotic in the sense of Anosov, i.e., they behave as i f  the), were 
Anosov systems as far as their properties of physical interest are con- 
cerned." Moreover, they point out that such a hypothesis should hold at 
least in the thermodynamic limit. Gallavotti and Cohen then proceed to 
consider dissipative, time-reversible, transitive Anosov systems, and their 
analysis leads to, among other things, the conclusion that the use of 
Eq. (6.3) in ref. 1 is justified for such systems (see ref. 20 for related rigorous 
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results and proofs). In this way, the measure they propose is shown to have 
a meaning for a large class of dynamical systems, as does the measure 
based on periodic orbits of Axiom A systems, which has been known and 
used for long time. ~2~'22~ The apparent reduced generality of the method of 
ref. 1 as opposed to the periodic orbit aproach, does not concern us, as our 
focus is on time-reversible systems, and we are not aware of a reversible 
Axiom A system which is not also Anosov. ~23~ That any system of particles 
obeys the chaoticity assumption in the form given by Gallavotti and Cohen 
is not known at present, so it is not known that principle R actually holds 
for systems other than Axiom A systems and those of ref. 19. However, the 
numerical test provided by ref. 15, as well as the indirect tests provided by 
the other works mentioned above, do make a strong case in favor of the 
validity of R, either as stated by Gallavotti and Cohen or in some related 
form. 

The popular technique of periodic orbit theory has been successfully 
applied to practical calculations of the properties of many low-dimensional, 
hyperbolic dynamical systems. ~24~ Among the many interesting features of 
this approach, we find that ~25J (a) orbits are hierarchically ordered (short 
cycles give good approximations to a nonwandering set); and (b) orbit 
stability eigenvalues are structurally robust (they change smoothly with 
parameter changes). 

Point (b), in particular, is important for the unification of equilibrium 
and nonequilibrium systems in a single framework. For instance, it was 
noticed in ref. 11 that orbits of finite length and their stability properties 
change smoothly over wide ranges of the applied external field, starting 
from the equilibrium zero-field case. Nonetheless, the computational dif- 
ficulty in finding all the periodic orbits of systems with an arbitrary number 
of dimensions has so far prohibited the application of periodic orbit theory 
to more general N-particles systems. For instance, the nonequilibrium 
systems in refs. 11, 26, and 27 all deal with one- or two-particle systems. 
These studies aim at showing that periodic orbit expansions can be applied 
to systems other than Axiom A (or Anosov), as indeed the nonequilibrium 
Lorentz gas is not a smooth dynamical system, and that they can be 
applied outside the linear regime of ref. 19, since they yield good results for 
rather large fields, at least where hyperbolicity and ergodicity still seem to 
hold. 

In this work we intend to go one step further in the application of 
periodic orbit theory and show that it can be used with profit in the study 
of many-particle systems. In such a context the periodic orbit method can 
then be regarded as largely equivalent to the technique of ref. 1. In fact, 
despite the lack of a proof of the validity of either of the two approaches, 
the underlying mathematical structure seems to be the same (Anosov-like), 
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and we expect that if one of the two methods works, the other also does. 
Assuming this to be the case, we have a trivial example of"equivalence of 
ensembles" in nonequilibrium statistical mechanics, trivial because the 
stationary ensembles derived with the method of ref. 1 and from periodic 
orbits ought to be the same SRB measure. Moreover, as pointed out by a 
referee, this equivalence is already known in the mathematical literature on 
Axiom A systems (see e.g., Chapter 7 of ref. 21 ). If this is shown to hold for 
wider classes of dynamics (perhaps in some sort of thermodynamic limit), 
it may result in a very important understanding of the physics of non- 
equilibrium systems, and it would justify the use of the most convenient 
paradigm among those that are available. As a matter of fact, there are 
speculations that this might be the case, c j~ based on the expected equiv- 
alence of stationary distributions produced by dynamics with stochastic ~-'~ 
and Gaussian ~2'~ thermostats, which are respectively absolutely continuous 
and singular with respect to the Liouville measure. Other arguments in 
favor of an equivalence of ensembles for nonequilibrium systems can be 
found in ref. 39. 

Throughout  this paper we assume that some form of the chaoticity 
hypothesis of Gallavotti and Cohen is satisfied by the dynamics of our 
systems of particles, so that they behave as if they were Anosov. This in 
turn justifies our  use of periodic orbit theory, as it implies that unstable 
periodic orbits are dense in the relevant attractor and that the weak limit 
of weighted orbital measures in the limit of large period is the correspond- 
ing SRB measure. This work is organized as follows. In Section 2 we intro- 
duce our notation and produce preliminary results for the case of many 
particles subjected to a constant external field and a Gaussian thermostat. 
Section 3 repeats the same for the problem of refs. 1 and 15, i.e., many- 
particle, thermostatted shearing flow. Section 4 shows some examples of 
how these results may be used in periodic orbit theory. Section 5 concludes 
this work with general comments. 

2. THE CASE OF A CONSTANT EXTERNAL FIELD 

In this section we consider a system of N spherical particles (so that 
rotational degrees of freedom can be ignored) which are subject to a con- 
stant external field. The interactions among the particles can be hard core 
or soft core, as long as they derive from a scalar potential. We also assume 
that there is a Gaussian thermostat ~29~ which fixes either the kinetic or the 
internal energy (depending upon the choice of ensemble), and that the 
system is periodic, so that there is a fundamental domain whose replicas 
tile the whole phase space. In the case of hard-core interactions the par- 
ticles feel the effect of the external field, but do not influence each other at 
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large distance. Their charge is called a "color charge" and the external field 
is called a "color field." The case of long-range interactions, instead, con- 
cerns electrically charged particles in an external field of force. The reader 
should note that the resulting equations of motion are not Hamiltonian, 
and thus they cannot be derived from quantum mechanics in the limit of 
vanishing h. As a consequence, the introduction of the fluctuating, deter- 
ministic, frictionlike force due to the thermostat may initially seem 
unphysical. However, it has been used extensively to treat many-particle 
systems in the computer simulation of thermal transport properties ~51 and 
its theoretical standing there is firm. It has been shown that this thermo- 
statting mechanism is optimal 16J in the sense that it obeys Gauss' principle 
of least constraint and that it preserves the reversibility of the equations of 
motion. Also, the value of the transport coefficient is directly related to the 
average thermostatting multiplier ~7~ and there is numerical evidence for a 
direct relation between the transport coefficient and the sum of conjugate 
pairs of Lyapunov exponents. ~3~3~ But by far the most important effect of 
the thermostat is that it guarantees the existence of a stationary state for a 
large range of values of the field, and therefore the existence of an attractor. 

Consider a system of N particles in d dimensions, with no restrictions 
on the mass m; and the charge ci of each one of them. Since the thermostat 
removes one degree of freedom and conservation of momentum removes d 
degrees of freedom, a kinetic temperature can be defined by 

l ~ !(p_ 
k T  d N - d - 1  m i P~ (1) 

i = 1  

where the velocity of the center of mass, Po = m/lo, say, is subtracted from 
the individual velocities to obtain the thermal momenta (p i -Po) ,  and the 
denominator is simply the number of degrees of freedom of the system. In 
all that follows we keep close account of both order-N and order-one 
terms. No approximations are made. The equations of motion for this 
system are 

~li= P;; p i=Fi . - I - c iF , , -oLp i  (2) 
m 

where F; is the total force exerted on particle i by all of the other particles, 
F,, is the constant external field, and e is obtained from Eqs. (2) by impos- 
ing the constraint that the kinetic energy of the system K is a constant of 
motion. Thus ~ takes the form 

(3) 
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where the current J is defined by 

N N 

s Z c , q , = 2  c' = - -  Pi (4) 
i = 1  i = 1  rni 

Many of the results that are presented here arise from the behavior of 
the stability eigenvalues (also called Lyapunov numbers) to variations in 
the external field. The stability eigenvalues are determined from the eigen- 
values of the linearized time evolution operator k(t). This operator gives 
the time evolution of the set of infinitesimal tangent vectors for the dynami- 
cal system and is related ~ to the local stability matrix T by 

L(t) --expL dsT(r(s)) 

= 1 +  Z ds2.., ds,,T(sl)T(s2)...T(s,,) (5) 
n =  I ) 

where I is the identity matrix, F(s)=(q,(s),p~(s),...,pu(s)) is the phase 
point at time s, while the stability matrix for smooth dynamics (along free 
flights, for example) is given by T =  0F/0F.  The symbol expL i~ T(s)ds is 
usually called a left-ordered exponential or time-ordered integral. It can be 
obtained as a product of infinitesimal time evolution operators whose 
exponents do not necessarily commute with each other. If the commutator 
[T(u), T(v)] = 0 for all times u, v �9 [0, t], then the left-ordered exponential 
reduces to the normal exponential of the integral of T, whose eigenvalues 
are the exponentials of the eigenvalues of the integral of "I'. If the dynamics 
is not smooth, as in the case of hard-core particles, the evolution operator 
k(t) can be expressed as an ordered product of free-flight and collision 
terms. The stability eigenvalues for the corresponding dynamical system are 
the eigenvalues of the symmetric matrix A, where c3'~ 

A = l i m  A(t) = l i m  ( L ( t )  T .  L ( t ) )  j'2' 

For almost all initial conditions the stability eigenvalues of the system are 
only defined in the limit as t ~ oo. However, for an initial condition which 
corresponds to a periodic orbit, we need only consider A(t) for one traver- 
sal of the orbit, because subsequent traversals simply reproduce the same 
pattern. Obviously, the computation of all the stability eigenvalues for each 
orbit of a many-particle system is a task beyond our present ability. 
However, in the approach based on periodic orbits the single stability 
eigenvalues are not needed; generally the product of the expanding ones is 
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enough; moreover, in the qualitative analysis we perform in Section 4 the 
determinant of the stability matrix suffices. 

Before constructing the stability matrix for color diffusion we need to 
define the notation that will be used throughout this paper. First we 
observe that a system of N particles is mechanically equivalent to a system 
of n = N -  1 particles. The redundant variables may be eliminated using the 
conserved quantities, the center-of-mass position, and the total momentum. 
Alternatively a coordinate transformation from (q~ ..... q N - t , q u }  to 
(q~ ..... qN--~, qo), where qo is the position of the center-of-mass, and a 
similar transformation for the momenta is sufficient. The equations of 
motion for qo and Po are trivial and can be removed from the stability 
matrix. Of  the remaining 2dn variables (in d dimensions), all but one of the 
variables are independent, the other being determined by the constraint of 
constant kinetic energy (or constant kinetic temperature). For  ease of nota- 
tion we will construct a 2dn x 2dn stability matrix. Note that in calculating 
the effect of an arbitrary variation due to a change in a single variable, the 
kinetic energy itself may vary. Treating the kinetic energy as a phase 
variable and using the equation for ~ takes explicit account of the constant 
kinetic energy constraint in the 2dn x 2dn stability matrix. 

For  a two-dimensional coordinate space the stability matrix T is made 
up of four 21l • 2n blocks, and it can be represented by 

where we give the form of the 0"th subblock of each of the 2n x 2n blocks. 
For color diffusion these subblocks are given by 

0 1 /!~ = o, ap,/j~ ,,,, a~'/' 

,(1 ) 0 . 1 ~ ~k 'PkP / ,  0 - - ~  ~n~ ~-~q,. P;-- g"~i . 2K a- ~P~ ~j = --&~"~ (F; + c,F,.)  - 2ap, p, 

The delta 6 t''' is equal to one if both i = j  and p = v, where p, v e {x, y} .  The 
matrix ~ is composed of d x d blocks, where the /jth block is given by 
0FJ0qi .  

For simplicity, consider the external field to be parallel to the x axis, 
so that F, .=(F,, ,  0). We deal first with the isokinetic dynamics of hard 
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spheres, and note that collisions among any number of them occur at dis- 
crete times. In fact, as in ref. 1, the collision times may be used to identify 
a Poincar~ section for the system. The equations of motion for a free flight 
a r e  

t~ i_,- = c i F ,, - ~ i., IJ o. = --~ o. 

and the thermostatting multiplier reduces to 

F,, ~ .Pi.,.= ~ F,,J.,. where GF" 
OC : ~ . ' A  C, 117, , -- I  ~OiPi" : 2 K  ' (Di : / . .  r 7  

i = 1  " " =  

Here J = (J,., J,,) is the dissipative current associated with a given trajec- 
tory. The determinant of k ( t ) =  expL ~ T(s)ds, limited to a free flight, is 
given by 

f( 
l 

In det(k(t)) = - ( 2 n -  1) co(s) ds (6) 
) 

If at time t some particles collide, the evolution operator for the 
tangent vectors from time zero up to immediately after the collision t § can 
be expressed as 

L(t) = L,.(t) Lr(t) = L,.(t) expc T(s) ds 

where lc(t) is the collision operator at time t and k/.(t) is the corre- 
sponding free-flight contribution. Because hard-core collisions preserve the 
Liouville measure, we have that the determinant of k,,(t) is one. Thus, the 
determinant of the stability matrix relative to a given trajectory is simply 
the product of the determinants corresponding to the free flights, and this 
implies that relation (6) holds for a generic trajectory and for an arbitrary 
time t. 

For a periodic orbit of period r the internal energy 

x ~ 1 u 
Ho(q 'P ) = 1  2 P.~7+2 ~ ~bu(q/i). 

- i = ~ m i  - i .  =~ 

is also periodic; thus we can integrate over a complete period to write 

(dn-1)  ~i ds ~(s) = 1  F~ ~ k T  " I o  ds J(s) (7) 



Periodic Orbit Theory 999 

from which we obtain the Lyapunov sum rule 

- ~ 2 , -  - d scc ( s )=  F,," d s J ( s )  (8) 
i = l  T ) 

which generalizes the sum rule for the nonequilibrium Lorentz gas c2' ~t.26~ to 
the case of many hard spheres subject to a color field. Here, 2~ is the ith 
Lyapunov exponent of the given orbit. 

The results for hard spheres can be readily generalized to the case of 
interactions which derive from a scalar potential. In fact, in two dimensions 
we have 

Yci = pi.,./m, )'~ i = P J m i  

,6ix=F~.,.+cJ,.-o%.,., p~.= Fo,--oLp~ ,. Vi 

where Fz = (Fix, F0,), the total force exerted on particle i by the remaining 
N -  1 particles, is assumed to be a function of the relative positions of the 
particles only. Then, for T we have 

T=( 0, AM) with 
- . 1 t 7  k 

where 

~vi = 0 F~/Oqi 

The block M is the same as for the hard-core case, while the block A is 
modified by the fact that the thermostat cr contains a collisional term 
depending on configurations: 

N [ F''p~'-'''i'" ] qb :v 
E = E 2K 

I i = 1  

where ~ is the total potential energy. Because ~ '  contributes no terms to 
the trace of the integral of T, the only modifications to Eq. (6) for the case 
of long-range interactions comes from the diagonal terms, and we get 

i 
I 

In det(k(t)) = - ( 2 n -  1) ~(s) ds 
) 

= - ( 2 n  - 1) {~(F(t))  - ~(F(0))  + ~ m~o~zlx~(t) 
i = 1  
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Thus, with a minor change, the result for hard spheres under the effect of 
a color field can be extended to the case of electrically charged particles. In 
particular, for potentials depending on the inverse of the distance between 
particles, we note that their singularities could constitute a problem, 
although the work done by the interaction forces vanishes if we consider a 
periodic orbit (up to a lattice translation). Thus, for soft-sphere potentials, 
it is more natural to fix the total internal energy of the system rather than 
its kinetic energy. To fix this quantity in time, we must impose the condi- 
tion that 

d H o = o  

d t  

and since F,, has vanishing component along the y direction, we deduce 
that 

~-.~F At C i N 
= - - P i . v :  ~ r (9) 

ct 2--K i = l rn i i=1 

which is the same expression we found for the isokinetic dynamics of hard 
spheres. This was to be expected, indeed, because in the hard-sphere case 
the total energy of the particles is purely kinetic. We conclude that Eq. (8) 
holds for all trajectories with soft interaction potentials, when the dynamics 
is isoenergetic. 

3. THE SHEAR FLOW CASE 

With the same techniques as used in Section 2 we now study a system 
of N particles subjected to shear. The SLLOD equations of motion are 

1 
(]i = - -  Pi + n.~.)'Yi, 

m i  
[~ = F ~ -  n.,. 7Py~- ~p~ 

where 

~'~N t F  . i=|~  i P i - - ) 'P . , . iPy i )  or= 
~ = ,  P~ 
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It can be shown that the elements of the stability matrix are then 

0 0 1 
q , =  ' 

0 1 

0 1 
c3p~ O, = --0~"~ -- 0 i~" ~, -- ~ , ,  ( F , -  n.,.yp.,,~- n.,.3T.,, i - 2~pi) p/ 

where dl)"= 1 for the term which corresponds to the y component  of i and 
the x component  of j, and zero otherwise. 

First we consider a hard-core, isokinetic system, so that stability 
matrix only contains the free-flight components.  These are 

'~i = P i x / m i  q- YYi ,  

p i.,. = - -  y p  ~. - c~p ~.,., 

YA. = p J m i  

1~ ~,. = - - ~ P  o' 

where 

0 C ~  _ _ m  

),  N 1 

2 K  ~ - -  Pi.,. Pi,.  t = II"1 i 

Therefore, the logarithm of the determinant of the evolution operator for 
tangent vectors t.(t) is given by 

In det(L(t)) = Tr T(s) d s  = - 2 n  d s  o~(s) (10) 

Note that the time average of ~ over a generic chaotic trajectory is related 
to the average shear stress for the system (which we assume to be ergodic). 
This equation is consistent with the Lyapunov sum rule for shear flow 
obtained previously.C 3 

If the interactions among the spheres are soft and derive from a scalar 
potential, the null block in the definition of T for hard spheres is replaced 
by a block a/ /which is identical to the One for the case of constant color 
field. This block does not contribute to the trace ofl-;  however, its presence 
changes the form of the thermostat  ~, so that the determinant of t_(t) for 
isokinetic dynamics has other terms besides those relative to the pressure 
tensor. As in the case of constant external field, these extra terms are 
related to the work done by the interaction forces. Thus, if we fix the total 
energy for our shearing flow, we find that the thermostat  ~ takes the same 

8 2 2 8 6  5-6-7 
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form as for the isokinetic, hard-sphere case, and that the determinant of 
L(t) is related to the pressure tensor in the same way as in Eq. (10). 

4. APPLICATIONS OF PERIODIC ORBIT THEORY 

As noted in the Introduction, the theory of unstable periodic orbits as 
a means of deriving stationary measures of Axiom A systems is well 
developed, t2~'3233~ At least two kinds of these can be obtained through 
periodic orbits; indeed, unweighted orbital probability measures converge 
weakly to the measure of maximum topological entropy, ~4~ while orbital 
probability measures, weighted by the expanding eigenva|ues of the 
associated stability matrices, converge weakly to the SRB measure, c-'2~ We 
are interested in this second set of orbital measures, on the grounds of the 
predictive value of principle R. ~ u,~ As for the method of ref. 1, the stationary 
measure is not available in explicit form, but only indirectly through the 
averages of phase variables. This, we believe, is a typical situation for non- 
equilibrium steady states, which distinguishes them from (many) equi- 
librium ones. ~27~ 

So far, the use of unstable periodic orbits (UPOs) for predictive pur- 
poses has been limited to low-dimensional dynamical systems, especially in 
the quantum chaos literature, c24j We show here possible ways of extending 
this approach to many-particle systems in nonequilibrium statistical 
mechanics. In order to do this, consider a system of the sort discussed in 
previous sections, and introduce a Poincar6 section for it. This can be done 
by taking snapshots of the evolution at discrete times corresponding to 
collisions among particles. In the case of soft potentials a collision may be 
identified by the instant at which two or more particles come within a cer- 
tain distance of each other. Then, let us assume that the natural measure 
of a given system can be approximated by unstable periodic orbits, that is, 
that principle R holds. The average of a phase variable B(q, p) in this case 
can be expressed as 

Z,~ ,,,,, A ~' I,]' B(s, s,,,) ds 
........ -I (11) ( B ) =  lim Zi~t',,,riAli 

where P,,, is the set of UPOs with m collisions, A ~i is the product of the 
expanding eigenvalues of the stability matrix, and ri is the length of the ith 
UPO (here each orbit has been parametrized by the variable s, which is the 
distance traveled along the orbit from an arbitrary origin s;o). 

Naturally, expansion (11) would hold if the chaoticity assumption of 
Gallavotti and Cohen was satisfied. However, the numerical work on low- 
dimensional systems seems to indicate that the conditions on principle R 
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can be relaxed considerably I"''~ 1.17.18.35)and this entails the possibility of 
extending the use of Eq. (11) beyond the limits of such a hypothesis. 
Indeed, the work by Chernov et aL ~19~ shows that for R to hold, smooth- 
ness of the flow is not always necessary, while our numerical simulations ~ ~ 
indicate that Eq. ( 11 ) produces the correct results for one such system over 
a wide range of field magnitudes. Chernov et al. ~ ~9~ also demonstrate that 
the initial ensemble does not necessarily need to be the Liouville measure: 
for the nonequilibrium Lorentz gas at small fields, it suffices to take an 
initial ensemble which is absolutely continuous with respect to such a 
measure. There are also speculations ~32"14~ (some based on numerical 
evidence ~36~) that periodic orbit expansions do not need to be restricted to 
hyperbolic systems. Whether and how the chaoticity assumption can be 
relaxed according to these ideas and extended to thermostatted systems of 
many particles is, however, a matter of pure speculation at present, except 
for the (rather large) existing body of numerical results for systems of 
several particles. In particular, it is not known whether the observed agree- 
ment between periodic orbit expansion results and thernaodynamic quan- 
tities is merely the effect of the limited accuracy of the numerical work 
(however, this seems to be a remote possibility). Thus the cbaoticity 
assumption of Gallavotti and Cohen remains for the moment the most 
solid mathematical basis for our and similar arguments. 

As a simple application of periodic orbit theory, let us compute the 
entropy production rate, a say, for our systems. In particular, for the case 
of a fixed external field we have that tr equals J"  F , . / T = J , . F , . / T ,  137~ where 
J is the dissipative current and T is the fixed temperature of the system. 
Observe that the current associated with a periodic (up to lattice transla- 
tions) orbit satisfies 

2 r 

/ = 1  

Therefore, using Eq. ( 1 1 ), we have 

J - E  
lim 

k T  . . . . . .  

~ , i ~  P,,, r i A  i z. . ,!  = t 

~ ' i e P , , , T i A f  " t - - -  \ i~= I 2 i  

Similarly, for the shear flow case the entropy production rate can be 
defined as the divergence of the right-hand side of the equations of motion, 
and, on average, it turns out to be 

o '= lim Z i ~ n " r i A ? ' ( 1 / r i ) ~ ] ' ~ ( s ) d s  /2a,v \ = - (  E 
m ~ ~ ~ i ~  I',,, T i A  i -  I \ i =  I / 
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In both cases, one can look at the probabili ty that the total entropy 
production in a given interval of time is a certain amount,  so to obtain a 
result related to the fluctuation theorem of Gallavotti  and Cohen. ~ To do 
this, observe that the probability of a U P O  with m collisions relative to all 
the UPOs  with same number  of collisions is given by 

~+ = Z . i + .  r iA, ,~ 

Because of the time reversibility of our systems, for every periodic orbit 
there is a second one of the same period whose stability eigenvalues are the 
inverse of those of the first; we regard these orbits as conjugate. In the case 
of a fixed external field, the two orbits share the same set of configuration 
points {q(s)}.~=o, but their momenta  at a point q, p+ and p = - p + ,  say, 
are opposite to each other. Thus, these two orbits give opposite contribu- 
tions to the current of the system. In the case of shear flows the orbits with 
equal period and inverse stability eigenvalues are related in a more com- 
plicated way, that is, they can be transformed into each other by means of 
a Kawasak i  mappingJ ~-~ Such orbits contribute opposite off-diagonal terms 
to the pressure t ensor /  The proportionali ty of the sum of Lyapunov 
exponents to the entropy production rate (related to the current in the case 
of fixed external field, and to the pressure tensor in the shear flow case) 
allows us to express the relative probability of a U P O  with given entropy 
production to that of a U P O  with opposite entropy production as 

- A _  I - A T  I = e x p  - r  i 2i.t = e  ~~ 
7 ~  - -  i I t ,  - - -  i 

where c is a fixed constant, independent of i, for a given system. Then we 
may define the relative probability of finding a trajectory with given 
entropy production to that of a trajectory with opposite entropy produc- 
tion as the following limit: 

= lira 

E++ p,,,,~ r~A,7.+ I 
= 

Zi~ p,,I-,~, riA,7.i B 

A -~ + ~,A,7~ + ... TI u ,  I - . _  

- e  "~ (12) 
T~ A,7. J ~ + ~2A,7.. '_2 + ...  

Clearly. only in the case of nonvanishing current toff-diagonal terms of the pressure tensor) 
can we claim that conjugate orbits are distinct; otherwise one orbit may coincide with its 
conjugate. 
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where we used the fact that each pair of conjugate trajectories shares 
exactly the same period and that A -t/A-I_~,,,=A~j In Eq. (12), P,,(a) is 

i ,  1r 

the set of periodic orbits with m collisions and entropy production rate a. 
Similar manipulations can be used for determining some qualitative 

properties of the current or of the pressure tensor. For  instance, we can 
organize all the periodic orbits with m collisions in three sets; let P,+ be the 
set of UPOs with positive current (pressure tensor), using the convention 
that the positive direction of the x axis is the same as the direction of the 
external field or of the shear. Let P, ,  be the set of UPOs with negative 
current (pressure tensor), and let P~,I, be the set of those with vanishing 
current (off-diagonal pressure tensor). 4 

Assuming that the attractor of our system is of the kind described in 
ref. 1, e.g., it is Anosov-like, we have that if one UPO is embedded in it, its 
conjugate UP O is embedded in the attractor as well. Then, Eq. (11 ) can be 
rewritten as 

( B )  =,, c,,, 
i E P.~ 

+ ~ A~ '  Bfs, s, )ds+ ~, A , , '  B(s,s,o)ds (13) 
i ~ I.,;, i ~ e',l, 

where every orbit in the first sum has a conjugate counterpart in the second 
sum, and the normalization constant is 

C.=  ~, T iA~ i  I 
i E P ,  

If the phase variable B is the current for the case of fixed external field, or 
the off-diagonal term of the pressure tensor for the shear flow case, the 
integrals of B over conjugate orbits are equal in magnitude and opposite 
in sign (with vanishing contributions coming from the orbits in P~,~,,). There- 
fore, introducing r~ ( B )  ~ = ~' B(s, s~o) ds, and denoting by - i the trajectory 
conjugate to i, we find that Eq. (13) takes the form 

( B ) =  lim 1 ~ r i ( B ) ~ [ A _ ,  A ~  ] 
n ~ -1_ C n i ~ l>tl ~ 

= lira 1 Z A ~ ' r ~ ( B ) ~ [ 1 - - A ~ ]  
tt ~ ~z C n i E  P~+ 

(14) 

It is interesting to note that the orbits in P~,~. for which the integral of ~ over a period 
vanishes preserve phase-space volumes and produce no entropy, similar to the case of equi- 
librium trajectories. 
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where 

Ai =exp ( - r  s s, sio) ds)=exp(-q~r~( B) A 

Here, r is a positive constant given in Section 2 for B = J, and in Section 3 
for B=Zip,.ipyi/mi, while $ is related to either the external field or the 
shear rate, depending on the case. It follows that the sign of ( B )  is non- 
negative because all terms in the expansion have the form x ( 1 - e - " " ) ,  
where c is a positive constant. Similarly, if we reverse our convention and 
take positive the direction against the field (or against the shear), we find 
that ( B )  is nonpositive. This fact shows how macroscopic irreversibility 
emerges in our systems with reversible dynamics. Moreover, because the 
number of degrees of freedom is not specified, our result holds for large 
as well as small systems. Clearly our result depends on the choice of the 
invariant measure, of which there are infinitely many. However, our choice 
corresponds to the physical (natural) measure, and thus it is the relevant 
one for the thermodynamics of our systems. 

5. C O N C L U S I O N S  

With a few examples we have shown how periodic orbits might be used 
in the study of nonequilibrium many-particle systems without actually 
having to compute the properties of any one of them. In order to do this, we 
had to rely on features of the particles' dynamics which have not been 
rigorously estabfished so far, but which are strongly supported by many 
numerical studies, including both direct and indirect tests of the relevant 
stationary measures and of the associated Lyapunov spectra. These facts lead 
to the conclusion that some form of the chaoticity assumption (or of principle 
R) of Gallavotti and Cohen is actually verified in the molecular dynamic 
simulations of nonequilibrium fluids subjected to different kinds of driving 
mechanisms. We can safely say this at least within the limits of accuracy 
attainable with present-day computing facilities. Thus, the use of unstable 
periodic orbits is justified in the construction of the nonequilibrium 
ensembles, which can be obtained as a weak limit of normalized, weighted 
orbital measures, where the weights are the inverses of the stability eigen- 
values associated with such orbits. The corresponding SRB measures should 
be the limiting measures of the dynamics, at least for initial conditions which 
are sampled randomly with respect to the Liouville measure. This, indeed, 
is sufficient if the dynamics, as for Anosov systems, satisfies the Axiom A 
conditions, but we expect that more general situations can be considered. 
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Thus we are led to conclude that periodic orbit theory for many- 
particle systems is equivalent to the theory of ref. 1, as, in particular, it is 
equally parameter free and it reproduces the same nonequilibrium ensem- 
bles through appropriate limiting procedures. We also believe that the two 
methods are marred by similar and complementary difficulties in their 
numerical implementation, so that the use of one or the other for a given 
system may be more effective depending on the particular problem. As a 
matter of fact, a direct implementation of Eq. (6.3) of ref. 1 for a system 
with more than a few particles may be beyond present-day computer 
abilities, and the situation may not be different for the implementation of our 
Eq. ( 11 ). However, much work is being done on periodic orbit expansions 
aimed at increasing their numerical efficiency. Two approaches can be 
followed in this direction: the development of convergence acceleration 
methods, and the understanding of how just a few orbits of short period 
could be used for accurate approximations of the natural measure. ~4~ 
Because of these facts and of the growing speed of computers, we believe 
that the state of the art will improve considerably in the coming years. At 
the same time, rather than implementing the methods described in this 
paper and in ref. 1, other methods, like the one of ref. 15, could be used, as 
proposed by Gallavotti and Cohen. 

We conclude by observing that for Axiom A flows the measure of 
maximum topological entropy, obtained as the weak limit of unweighted 
orbital measures, and the SRB measure can be reduced to coincide, under 
suitable conditions, by a unique transformation of the speed of the flow. ~22~ 
Thus, to investigate the question of the equivalence of those two measures 
for many-particle systems might be beneficial for the applicability of peri- 
odic orbit theory, as the whole theory would be simplified whenever such 
equivalence holds. This will also be mirrored in much simpler numerical 
work, as it will remove the need for the computation of stability eigen- 
values. Moreover, in a recent work Tasaki and Gaspard ~38~ suggested that 
maximizing the (Kolmogorov-Sinai) entropy may provide a guiding prin- 
ciple in the choice of the stationary ensemble, so that thermodynamics 
naturally emerges. 

Finally, the argument recently proposed to understand the origin of 
irreversible behavior in the Lorentz gas ~26~ has been shown to be applicable 
to N-particle systems. This extension only requires two properties of the 
system. The first is that the stability weight associated with each periodic 
orbit is equal to the product of the expanding Lyapunov numbers, and the 
second is that the Lyapunov sum rule is exactly satisfied for each periodic 
orbit. The mechanism can then be applied to any thermostatted N-particle 
system which has these two properties. 
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